
 

 

  
Abstract— The development of efficient methods and also 

technological advances permit the implementation of predictive 
control on embedded systems with limited computational power and 
memory capacity. However, predictive control with a finite number 
of admissible input values still remains restricted to powerful 
computational platforms as problem becomes NP-hard. Given the 
growing computational power of embedded controllers the topic 
becomes more and more attractive. In the paper the solver based on a 
standard branch-and-bound method and interior point method is 
implemented the target system with low power and limited RAM 
memory. The performance is evaluated in two simple simulation 
experiments. In the first simulation experiments the goal is to control 
the level in a MIMO water tank with binary, integer and continuous 
input signals. The second experiment evaluates the predictive control 
based on the hybrid model of the two-tank system. 
 

Keywords— Embedded Systems, Predictive Control, Mixed-
Integer Quadratic Programming, Branch-and-bound Method..  

I. INTRODUCTION 
ODEL predictive control has had recorded an exceptional 
growth growth due to its independent adoption by the 

process industries where it proved to be highly successful in 
comparison with alternative methods of multivariable control 
[1]. Its phenomenal success is contributed to its ability to 
handle hard constraints on inputs and states that arise in most 
applications and its conceptual simplicity to handle complex 
systems. Process controls with a finite number of admissible 
values are common in a large number of relevant applications. 
For example, chemical plants are equipped with valves that 
can be either open or closed. A large potential for optimization 
is found as the number of potential modes of operation is hard 
to explore in an exhaustive way. The Mixed-Integer Quadratic 
Control or Hybrid optimal control as referred by several 
authors [3] addresses the optimal control problem of such 
systems.  

The resulting mixed-integer quadratic problems (MIQP) are 
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usually solved using the commercial solvers such as CPLEX or 
GUROBI that enables to deploy mixed-integer MPC on 
desktop platform. The necessity of these solvers limits the 
application to powerful computing platforms and slow 
dynamical systems.   

Recently, efficient online solution methods for convex 
quadratic problem have been developed that can be 
implemented on the embedded hardware and are able to solve 
the problem at high sampling rate. An online MPC strategy 
with a good balance between computational speed and 
memory demand based that uses a fast gradient method was 
developed in [4]. An interior point solver was specifically 
designed for embedded applications in [5]. Many real-life 
problems can be represented as MLD (Mixed Logic 
Dynamical) systems [3] which are hybrid systems and whose 
MPC control requires solution of the MIQP problem [6]. 
Different methods for hybrid optimal control problem solution 
were evaluated in [7]. Currie, Prince-Pike and Wilson 
developed a MATLAB framework for generating fast model 
predictive controllers for embedded targets such as ARM 
processors and tested it on inverted pendulum in [8].  Bleris 
and Kothare present a real-time implementation of the MPC on 
a microcontroller for Glucose regulation in [9].  
Implementation aspects of the MPC on Embedded System are 
also discussed in [10], [11] and [12]. The increase in 
computational power such as ARM Cortex processors and 
advances in optimization algorithms has opened a new trend 
which brings MPC capabilities also to complex and fast 
systems. With the development of cheap multi-core CPU in 
microcontrollers, the parallel computation might be the 
promising way for further decrease of computation time.  

The aim of the paper is to illustrate the practical feasibility 
of mixed-integer MPC with constraints on a low cost 
embedded system where the problem is solved using branch-
and-bound method and the relaxed quadratic programming 
problem is solved with interior point method. The paper is 
structured as follows: Section II briefly repeats the MIQP 
formulation and the branch-and-bound algorithm. The interior 
point method used for solution of the relaxed problem is 
described in Section III. The description of the embedded 
system is given in Section IV. Section V contains the results of 
the implementation of the solver on embedded system for 
simulation example of a two-tank system. In Section VI the 
hybrid model of two tank system is developed using  MLD 
strategy with considering all constraints of the physical plant 
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and the model is used in mixed-integer predictive control. 
. Finally, the main conclusions are summarized in the last 

section.  

II. BRANCH-AND-BOUND METHOD 
In this section the description of the implemented branch-

and-bound algorithm is given. Mixed-integer quadratic 
programming (MIQP) problems are optimization problems 
with a quadratic objective function, subject to linear equality 
and inequality constraints as presented below and where some 
variables are constrained to be integers. A common special 
case of MIQP is when the integer variables are constrained to 
binary values 0 or 1. The problem is non convex due to the 
fact that the optimized variables xi belong to the binary set. 
The general formulation for a mixed-integer quadratic 
programming problem is the following, 
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  where H is a positive definite n x n matrix ( i cn n n= +  ), f is 
the n-dimensional vector. The n-dimensional vectors aj and cj 
and vectors b and d are used to set up the constraints. The 
numbers of equality and inequality constraints are specified 
with mec and mic, respectively. The equality and inequality 
constraints define a feasible region in which the solution to the 
problem must be located in order for the constraints to be 
satisfied. The only difference when compared to the convex 
QP is the presence of binary variables xi. Fortunately, if the 
binary variable is fixed or relaxed, a convex set is obtained 
and the problem can be solved using conventional methods for 
convex optimization. A constrained QP is usually solved either 
using an interior point method or an active set method.  

Branch-and-bound has been the most used tool for solving 
large scale NP-hard combinatorial optimization problems since 
the  branch-and-bound method is an order of magnitude faster 
than any of the other methods such as Generalized Benders 
Decomposition or Outer Approximation. The method is so fast 
due to the fact that that the QP subproblems are easy to solve.  
For MATLAB, free software like YALMIP [13] can be used. 
During the solution process, the status of the solution is 
described by a pool of yet unexplored subset of the solution 
space and the best solution found so far.  The nodes in a 
dynamically generated search tree, which initially only 
contains the root, and each iteration of a classical branch-and-
bound algorithm processes one such node represent 
unexplored subspaces. The iteration has two main 
components: selection of the node to process and branching 
strategy. The nodes created are then stored together with the 

bound of the currently processed node. The search stops when 
the pool of unexplored subset is empty and the optimal 
solution is then the one recorded as "current best". 

 
There are two common node selection strategies for 

selection of the node to proceed in the next iteration. The first 
one is best-first-search, where the next node is always the one 
with the lowest dual bound. This method however requires a 
large amount of storage. The second class of node selection 
strategies depth-first-search where warm-starting can be 
successfully applied due to the similarity of the subproblems 
and also number of unexplored nodes is low, which 
significantly reduces the storage requirements. Due to the 
limited memory of the microcontroller the depth-first-search 
strategy is used in the example. Branching on a variable 
involves choosing the branching variable of the current 
optimal solution of the relaxed problem and then adding a 
constraint to it. The maximum fractional branching strategy 
which chooses the variable with the highest fractional part is 
used in the solver. The scheme of branch-and-bound method is 
depicted in Fig. 1. 

 
Fig. 1 branch-and-bound method 

III. INTERIOR POINT METHOD 
 

At each node the relaxed QP is solved solved either using an 
interior point method or an active set method. Interior-point 
methods solve problems iteratively where each iteration is 
computationally expensive but can make significant progress 
towards the solution. The solver uses the interior point method 
for solution of the relaxed problems: 

 
min 0.5

: 0
0

T T

n
c c

c

x R
+

∈ + =
+ ≥c

x Hx f x
A x b
C x d

  (2) 

  
where A is a mec x n matrix describing the equality 

constraints and C is an mic x n matrix describing the inequality 
constraints. b and d are mec x n and mic x n vectors 
respectively. The Lagrangian L(x,y,z) with vectors y and z 
containing the Lagrange multipliers is defined as: 
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The following optimality conditions can be obtained with 

the introduction of the slack vector :  
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Defining the function F(x,y,z,s) such that the roots of this 

function are solutions to the first four optimality conditions we 
obtain set of linear equation: 
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where * is the element-wise multiplication of vectors. For 

solution of this set of equation predictor-corrector method 
proposed by Mehrotra is used. As a stopping criterion the 
following criterions are used:  
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and also maximum number of iterations  kmax is specified. For 
the solution of the set of linear equations Ax=b from (5) the 
LDLT factorization is used.  

 
T T=PAP LDL   (7) 

 
where P is a permutation matrix, L is a unit lower triangular 
matrix and D is a block diagonal matrix with 1x1 and 2x2 
blocks. Once a factorization has been computed, the solution 
to the linear system Ax = b can be computed at comparably 
low cost by solving a sequence of equations: 
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  (8) 

 
with intermediate vectors u,v,w. The cost of the solve 
procedure (8) is most of the time negligible with respect to the 
cost of computing the factorization (7). The LDL factorization 
implemented in the LAPACK library [14] exploits the partial 
pivoting based on the Bunch-Kaufmann method [15].  
 

IV. SELECTED HARDWARE PLATFORM 
The proposed MIQP problem solver was implemented on 

The Stellaris® LM4F120 board which is a low-cost evaluation 
platform for 32-bit ARM® Cortex™-M4F-based 
microcontrollers from Texas Instruments (Fig 3). 

 The microcontroller runs at 80 MHz. The board has 32KB 
of SRAM memory, 256KB of flash memory and 2KB 
EEPROM. For implementation of the solver the requirements 
for memory and evaluation speed must be considered. The 
board has only 32KB of RAM however system parameters and 
constraints can be stored in flash memory as they are fixed and 
only read during the solution of the problem.  

We have developed a simple implementation of branch-and-
bound algorithm with interior point method for computation of 
the relaxed problem, written in C, using the LAPACK and 
BLAS libraries to carry out the numerical linear algebra 
computations such as matrix-vector multiplication, LDLT 
decomposition and solution of system of algebraic equations. 
The solver is implemented using double precision floating-
point arithmetic. 

 
Fig. 3 Stellaris LM4F120 launchpad board 

 

V. NUMERICAL EXAMPLE I 
 
The first numerical example consists of the buffer and 

supply tanks. There are four control inputs: a two-stage pump, 
a continuous heater, and two on/off  valves . The function of 
the plant is to receive liquid from an upstream process, and to 
deliver this liquid at some reference temperature to a 
downstream process. 
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Fig. 2 two-tank system 
 
The process dynamics is given by the following set of 
differential equations: 
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 where [ ]1 2 3 4
Tx x x x x= is the state, 1 2 3 4

Td d d cu u u u u =    is the 

control input, and [ ]1 2 3
Tv v v v=  is the disturbance signal. 

The model parameters are given in Table I, the legend for the 
states, controls, and disturbances is given in Table II. The 
system was linearized at steady-state point 

0 0[7 ,18 ,1.5 ,22 ]s Tx m C m C=  for input signal 
[280 ,1,1,1]s Tu W= . Maximal output of the heater is 560W.  

 
Table I Model parameters 

Ab 3.5 m2 Buffer area  
As 2 m2 Supply area 
cl 4.2kJ/kgK Specific liquid heat capacity 

lρ   1000kg/m3 Liquid density 
α   1m3/min Pump capacity factor 
∆   0.25min Sample period 

Table II States, controls and disturbances 
x1,x2 Buffer and supply levels 
x2,x4 Buffer and supply temperatures 

1
cu   Heater 

2
du   Pump 

3 4,d du u   Inlet and outlet valves 

v1 Inflow 
v2 Temperature of inflow 
v3 Outflow 

 
The mixed integer predictive control optimization problem 

is based on a time-invariant discrete process model and  linear 
constraints: 
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where  (k )y i+ is the ith step output prediction,  (k i)ry +  is 
the i-th step of the reference trajectory,  Δu(k)  is difference 
between u(k) and u(k-1), R,Q are positive definite matrices 
and Np and Nc are the prediction and control horizons, 
respectively and Ac and bc are the constraints matrix and vector 
that can be derived from process model and input and state 
constraints. Only the first element of the optimal predicted 
input sequence Δu(k) is applied to the plant: 

 
(k) u(k 1) (k)u u= − + ∆   (11) 
 
The normalized discrete linearized model of the plant is 

assumed in the form:  
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=
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where u(k) is the vector of manipulated variables or input 
variables; y(k) is the vector of the process outputs and x(k) is 
the state variable vector. The sampling time was set to 15s. 
Using the linear model the model predictive controller would 
exhibit steady – state offset in the presence of plant/model 
mismatch or unmeasured disturbance due to lack of integral 
action. In order to introduce integral behavior, a new state 
variable vector is chosen to be: 
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Combining  (12) and (13) leads to the following state-space 

model: 
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The process state-space model can be rewritten as a 

prediction model for the current state vector x and control 
increment sequence 

[ ](k), (k 1),...., (k 1) T
cu u u N∆ = ∆ ∆ + ∆ + −U . For given 

horizons it can be formulated in terms of vectors as: 
 
= + ∆Y Kx L U   (15) 
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where p(k 1), y(k 2),...., y k N
T

y = + + = + Y and K and L are 

constant matrices derived from the process model.  
The Hessian matrix H and vector f from criterion  (1) can 

then be formulated as:  
  

r, ( (k))T Tf= + = − −H L QL R R Y Kx L   (16) 
 
The control task is to keep the supply temperature at its 

nominal value while preventing overflow/emptying of the 
buffer and supply tank. Both the prediction and control 
horizons were set to 4 steps. The mathematical formulation of 
the predictive control for prediction and control horizon of 4 
steps with constraints results corresponds to an MIQP with 4 
continuous variables ( 1u∆ ) and 8 binary variables ( 3 4,u u∆ ∆  ) 
and 4 integer variables ( 2u∆ ) and 48 inequality constraints. 
The weighting matrices Q and R were set identity matrices. 
Sixteen of the 48 inequality constraints are necessary to restrict 
the 8 binary values from 0 to 1. The execution times and 
number of relaxed QP solved at each sampling point is 
presented in Fig. 4. The closed-loop response of the MPC 
controller is presented in Fig. 5 and 6. 
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Fig. 5 number of solved relaxed quadratic problems and execution 

time 
 
The matrices nxnH R∈ , icn xn

cC R∈  , n
cA R∈   and vectors f, 

bc, dc for definition of constraints and cost function of  the 
MIQP problem are stored in flash memory. The branch-and-
bound method requires a pool for storing the nodes during the 
solution process. The memory requirements in bytes are given 
by two matrices for storage the additional constraints of the 
size npool * ni , a double vector of the size npool to hold the 
bounds for each node in a pool and integer vector to store the 

priority of the nodes in the pool. Interior point method requires 
allocation of vectors , , , , z, , ,x x y y z s s∆ ∆ ∆ ∆  , the matrix A and 
vector b of the system Ax=b in the memory. The matrix A is 
symmetric so only lower triangular part of the matrix A is 
stored. The number of elements of lower triangular matrix is 
given as:  

   

ic i
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Fig. 5 closed-loop response of the two-tank system using mixed-
integer predictive controller – system states (dotted line –system 

constraint and reference signal for x4) 
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Fig. 6 closed-loop response of the two-tank system using mixed-
integer predictive controller – system inputs (dotted line- input 

constraints) 
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VI. NUMERICAL EXAMPLE II 
 
In the second example the same optimization method is used 

for control of two-tank system using the MLD modelling 
framework. The MLD modeling framework is based on the 
idea of translating logic relations, discrete/logic dynamics, 
A/D (analog to digital (logic)), D/A conversion and logic 
constraints into mixed integer linear inequalities. These 
inequalities are combined with the continuous dynamical part, 
which is described by linear difference equations.   The 
resulting MLD system is described by the following relations: 
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where x is the vector of states which can be continuous or 

binary, u is the command input and may also contain 
continuous and binary  commands, δ   and z are respectively 
auxiliary logical and continuous variables, and y is the system 
output. 

In [3], Bemporad and Morari introduced a model predictive 
control of hybrid systems using mixed logical dynamical 
(MLD) system description and a mixed integer linear program 
solver. Assuming a quadratic cost function from the MLD 
model the optimization has the following form: 
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Subjected to equations which define the MLD system for N 
steps ahead predictions (1). The matrices  1, 2, 3, 4,Q Q Q Q    are 

given weight matrices. This problem can be rewritten to a 
standard MIQP programing form: 
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where nc and ni define the numbers of continuous and integer 
variables,  H is a positive definite matrix, f is the n-
dimensional vector. The n-dimensional vectors aj and cj and 
vectors b and d are used to set up the constraints. The numbers 
of equality and inequality constraints are specified with mec 
and mic, respectively. The equality and inequality constraints 
define a feasible region in which the solution to the problem 
must be located in order for the constraints to be satisfied. The 

optimization procedure of (20) leads to problems with the 
following optimization vector : 

 
(k),...,u(k N 1), (k),..., (k N 1),

z(k),..., z(k N 1)
u δ δ+ − + − 

=  + − 
u   (21) 

 
The predictor matrices for future outputs of the system  

were recursively developed using formulas in  . 
 

ˆ * ( )x k= +Y K Lu    (22) 
 
The parameters of the simulation model were taken from 

[17] where hybrid modeling of such system is considered. The 
system consists of two liquid tanks that can be filled with 
pump acting on the tank l (Fig. 7.). The pump delivers the 
liquid with flow-rate Ql with upper limit Qrnax and represents 
continuous input u1. The tanks are interconnected to each other 
through two pipes. The liquid levels h1 and h2 in each tank can 
be measured with continuous valued level. The valve V1 is 
kept constantly open. The valve V2 can be opened or closed 
and it is considered as discrete input u2. The control task is to 
control level in the second tank.  

  
Fig. 7 Two-tank system scheme) 

 
The MLD model was developed using the HYSDEL Toolbox 
[18]. The resulting model has two states [ ]1 2,x h h= , the input 
vector combines continuous and discrete part [ ]1 2,u Q V= and 
there are two continuous auxiliary variables [ ]1 2,z z z=  which 
define the flow-rate through the upper pipe and flow-rate 
through the valve V2. The auxiliary binary variable δ  reflects 
whether level in the first tank is higher than hv.    
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Table III Model parameters 
S 00154 m2 Tank Section 
As 3.6E-5 m2 Cross-section area 
cl 9.81m/s2 Gravity constant 

lρ   0.5m Height of pipe  

maxQ   2E-4m3/s Maximum inflow 
∆   5s Sampling time 

 
The prediction horizon equal to 4 steps is used with a 

sampling time Ts = 5 s. Constraints on the first control input 
are added: 

 

1 max0 u Q≤ ≤    (23) 
 

The weighting factors in (19) were set to : 
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Increasing the horizons may increase the performance of 

the controller, but it increases the complexity of the mixed-
integer programming procedure. The choice of prediction 
horizon offers reasonable values in terms of performance and 
speed.  
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Fig. 8 Mixed-integer predictive control with hybrid model 

 
The increased complexity given by the MLD description of 

the system with prediction horizon of 4 steps resulted in the 
optimization problem with 20 optimization variables and 76 
inequalities. 
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   (25) 

 
  The closed-loop response of the MPC controller is 

presented in Fig. 8. 

VII. CONCLUSION 
The results show that solution of the predictive control   

problem with 16 variables (4 continuous, 4 integer and 8 
binary) and 48 constraints is manageable on the low power 
platform. Enough free time remains for the control loop 
including Kalman filter for state estimation and filtration. 
Mixed Logical Dynamical (MLD) approach appears as a 
systematic way for modeling hybrid system, where logic 
conditions can be easily transformed into mixed-integer 
inequalities. On the other hand it increases the computational 
complexity of the optimization problem and limits the 
application for predictive control with short prediction 
horizon. The simulation study showed that the memory as well 
as the computational demand of an MIQP solver 
implementation is decisive for real-time use on low-cost 
embedded systems.  
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